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Abstract Stability and plasticity in learning systems are
both equally essential, but achieving stability and plasticity
simultaneously is difficult. Adaptive resonance theory (ART)
neural networks are known for their plastic and stable lear-
ning of categories, hence providing an answer to the so called
stability-plasticity dilemma. However, it has been demons-
trated recently that contrary to general belief, ART stability
is not possible with infinite streaming data. In this paper,
we present an improved stabilization strategy for ART neu-
ral networks that does not suffer from this problem and that
produces a soft-clustering solution as a positive side effect.
Experimental results in a task of text clustering demonstrate
that the new stabilization strategy works well, but with a
slight loss in clustering quality compared to the traditional
approach. For real-life intelligent applications in which infi-
nite streaming data is generated, the stable and soft-clustering
solution obtained with our approach more than outweighs the
small loss in quality.

Keywords Adaptive resonance theory · Stable learning ·
Neural networks · Machine learning

1 Introduction

Stability is an essential aspect of learning; without it, an
intelligent system becomes subject to catastrophic forget-
ting. There are two types of stability: the first one is stable
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attribution of data. This means that if an identical datum is
presented several times to a learning system, it will be consis-
tently recognized as belonging to the same category. For ins-
tance, a circle should continue to be recognized as a circle in
a shape recognition system and a robin as a bird in an animal
classification application. The second type of stability is one
that ensures that given a finite data set repetitively presented
to a learning system, there will not be endless proliferation
of categories. For example, in the case of a parts recognition
system in a manufacturing environment, the parts previously
classified by the system should not continually trigger the for-
mation of new (and most likely useless) part types when the
same parts are presented again. A learning system is deemed
stable if both types of stability are achieved.

One could describe stability as being about remembering
past experiences and avoiding changes. On the other hand,
another very important aspect of learning is plasticity, one
that defines adaptability to new situations. Plasticity, contrary
to stability, is the property of learning systems that allows
for continuous learning in the face of novelty. Stability and
plasticity are forces that conflict. Consequently, it is rather
difficult to achieve both simultaneously in artificial learning
systems, although clearly natural learning systems do not
seem to suffer from this problem.

It is trivial for an on-line learning system to be stable:
it merely has to stop learning on new data, for instance by
iteratively decreasing the value of a learning parameter such
that as time passes, less and less learning takes place. On the
other hand, off-line supervised classification learning sys-
tems achieve stability by forfeiting plasticity all together.
Indeed, once the classifier function has been acquired, no
new learning is allowed. In both cases, one had to give up on
plasticity to achieve stability.

Adaptive resonance theory (ART) neural networks
(Grossberg 1976; Carpenter and Grossberg 1995) have been

123



658 L. Massey

designed over 30 years ago by Stephen Grossberg to address
this exact problem of constructing learning systems that are
both plastic and stable. ART networks properties of stabi-
lity and plasticity as well as their ability to process dynamic
data efficiently make them attractive candidates for recogni-
zing patterns in large, rapidly changing data sets generated in
real-life environments. The applications of ART span many
domains, including among others sonar signal recognition
(Carpenter and Streilein 1998), parts management at Boeing
(Caudell et al. 1991) and text clustering (Massey 2003).

ART networks are on-line, unsupervised learning systems,
allowing both continuous learning (plasticity) and guaran-
teeing a stable internal representation. ART converges to a
stable representation after at most R−1 presentations of the R
data items (Georgiopoulos et al. 1990). However, an impor-
tant and until now unresolved problem with ART stability
was recently identified while investigating its application to
a real-world problem (Massey 2005b). In short, the problem
is that contrary to general belief, ART stability is not possible
with infinite streaming data. In order for ART to be usable
in a real-life environment characterized by a continuous data
stream and by periodic novelty detection capability, a solu-
tion to this problem is imperative.

The work presented here is very different from our pre-
vious work with ART (Massey (2002, 2003, 2005a, b) where
we tested a standard version of ART under various conditions
of text clustering and measured the effectiveness of docu-
ments grouping by topics for real-life applications. Here, we
present and analyse in detail the ART stabilisation problem
we have previously identified briefly in Massey (2005b). Our
contribution in this paper is to resolve this problem by presen-
ting and testing a new stabilization strategy called concep-
tual duplication. The Conceptual Duplication principle offers
two major advantage over regular ART stabilization : (1)
an actually stable representation for infinite streaming data
common in real-life applications; and, (2) a soft-clustering
solution compatible with realistic classification of text docu-
ments.

In Sect. 2 of this paper, we describe ART neural net-
works, including their standard stabilization process, how
this process fails to deliver on its promise of stability and then
how conceptual duplication works to resolve the problem. In
Sect. 3, we experiment with and discuss the new stabilization
strategy in a topics recognition task using a benchmark text
corpus.

2 Adaptive resonance theory

2.1 Description of ART networks

Definition 1 (Data set) Let X = {x1, x2, . . . , xR} be a set of
individual datum (data element or object). X is the data set

Fig. 1 The ART1 architecture showing the two interconnected layers
of neurons and the external control system C

of cardinality R of all such data elements, each data element
being a vector in {0, 1}N of the form xk = (x1, x2, . . . , xN ).

Definition 2 (Cluster or category) A cluster (category) is a
subset α ⊆ X . A clustering solution is the set of clusters a
clustering algorithm discovers in a data set X . Hard clustering
is a partition of X into mutually exclusive clusters while soft
clustering allows a datum to belong to more than one cluster.

In this paper we focus on the binary ART version known
as ART1. The general architecture of an ART1 network is
summarized in Fig. 1. The network is made of two intercon-
nected layers of neurons and of an external control system
(the box labeled C at the right of Fig. 1) that determines the
operational mode of the layers. Weights wi j exist on bottom-
up connections going from input neuron i to output neuron j .
There is one input neuron i for each component of an input
vector xk of dimension N . Weights t j i are attributed to top-
down connections, from output neuron j to input neuron i .

Definition 3 (Prototype) Each output neuron j ( j = 1 to M)
has an associated vector tj = (t j1, t j2, . . . , t j N ), that is
constituted of the weights t j i on the connections out of
neuron j . Such vector tj is known as the cluster prototype,
that is the internal representation of the category learned by
output neuron j . Similarly, there is an input activation vector
wj corresponding to the weights of connections going from
the input layer to output neuron j .

During processing, the input layer receives data inputs and
propagates them on the bottom-up connections, which causes
activation of neurons on the output layer. The dot product ·
between input xk and bottom-up connections weight vectors
determines the activation u j of each output neuron j :

u j = xk · wj (1)

Competitive selection takes place between output neurons.
The winner selected is the neuron j* with maximum activa-
tion j∗ = arg max(u j ). The cluster represented by this output
neuron is deemed to be the one with the greatest correlation
with the input. The input is attributed to the winning output
neuron and prototypes weights are updated as such:

t′j∗ = tj∗ ∧ xk (2)

The prototype weight update with a logical AND guaran-
tees a unidirectional movement of prototypes (monotonically
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decreasing magnitude) and thus also contributes to stability
(Moore 1988).

To stabilize, the network must iterate through the data
until there is no further change of the input assignments to
category nodes. It was demonstrated that ART converges to
a stable representation after at most N − 1 presentations of
the N data items (Georgiopoulos et al. 1990).

The serial algorithm implementing the binary adaptive
resonance theory concepts is as follows:

0. Provide parameter values L and ρ:

0 < ρ ≤ 1

L > 1

1. Initialize weights wi j and t j i :

wi j = 1/(1 + N )

t j i = 1

2. Present next datum xk to network. If no more datum,
re-process all data until prototypes do not change.

3. Compute output value for all output neurons:

u j = xk · wj

4. Choose most active neuron j∗ as winner; go to step 5.
If there is no active neuron, create a new one jnew and
initialize its weights :

tjnew = xk

wjnew = 1/(1 + N )

then go to step 2.

5. Propagate prototype tj∗ of winning neuron to input layer
and perform vigilance test:

(xk · tj∗)/||xk|| ≥ ρ

where||xk|| =
∑N

i=1
(xi ) for a N -dimensional

datum xk = (x1, x2, . . . , xN );
If true, go to step 6 (resonance mode);
Otherwise, go to step 8 (search mode).

6. Update weights :

t′j∗ = tj∗ ∧ xk

w′
j∗ = L(xk ∧ tj∗)/(L − 1 + (xk · tj∗))

7. Re-activate all output neurons and go to step 2.
8. De-activate neuron j∗ and go to step 4.

2.2 The stability problem

Definition 4 (Assignment or attribution) Let xk be a datum
that has reached resonance with prototype tα as per step 6
of the ART1 algorithm. An assignment (attribution) ∈ deter-
mines the membership of datum xk in cluster α: xk ∈ α. We
also say that xk is assigned or attributed to α.

The ART stabilization is an iterative process that looks at
the whole data set up to R − 1 times or until data elements
stop moving between categories. We will henceforth refer to
these iterations in the data set as the stabilization iterations.

Stabilization works as follows:

− First, assume that a datum xk has just been processed by
the neural network and is coded by prototype tα . This is
to say that xk has been assigned to a cluster (or category
node) α of data represented by prototype tα .

− Secondly, some of the further data processed by the
ART1 neural net may also be assigned to this same clus-
ter α and consequently prototype tα will be updated to
reflect the intersection of all assigned data as per formu-
lae (2).

− Third, entering a stabilization iteration, datum xk is pre-
sented again to the network and may not anymore be
deemed similar enough to prototype tα . This is possible
because the prototype may have been changed by other
data. The network must then reassign datum xk to ano-
ther cluster tβ .

Thus, the ART network forgets some of its previous expe-
riences during stabilization to re-code assignments of pre-
viously processed data to new clusters. In other words, during
stabilization, data is moved between concepts. When this
movement stops, stabilization is achieved.

Stabilization is similar to sleep in living organisms, a per-
iod during which experiences of the day are re-processed and
properly coded and re-coded in memory. For an artificial lear-
ning system such as ART used in a real world, high-volume,
24/7 operation, stabilization may have to occur during system
idle time. The various iterations may not occur immediately
one after the other as there may be more urgent tasks requi-
red, such as processing newly arrived data and delivering it
to a user.

For instance, suppose the system under consideration is
one that routes, based on topics, intelligence and operational
documents to various military analysts. This information is
highly perishable and must be processed with high priority,
before any further stabilization iteration can continue. As
demonstrated in Massey (2005b), one might setup the sta-
bilization to occur during low activity periods on document
batches of various sizes. However, that approach was shown
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to significantly lower clustering quality and is therefore not
acceptable.

The fundamental question one must then ask to clearly
delineate the problem with ART1 stabilization is: what hap-
pens in between stabilization iterations with data awaiting
stabilization? During the first processing pass, data will be
assigned to some clusters. Then during stabilization, data
will be moved, defeating the whole purpose of providing a
stable and consistent environment to users. That is, a datum
xk has been initially assigned to cluster α. xk may be an
important document attributed to topic α. The users expect
to always find this document under that same topic folder
once it has been saved there the first time. However, later on
the document may be moved to another topic as stabilization
continues. Users will not find the document under the same
topic. This movement of data between categories can happen
several times and is clearly a problematic situation.

In fact, the whole idea of stabilization rests on the pre-
mise that convergence to the so-called stable representation
is achieved after the ART network has been able to iterate
through the whole data set several times. If a finite data set
is being processed, then indeed a stable categorization of the
data can be attained.

However, in many real-life streaming data problems, data
is for all practical purposes infinite, in the sense that it conti-
nues to be delivered to some categorization system until the
data source is terminated. This will most likely span years,
and therefore even though the data is not really infinite, it is
relative to the system and its users who do not see an end
to it. Hence, data needs to be processed incrementally for
the whole life of the system. Although there may be tempo-
rary system shut downs (for example, due to maintenance or
upgrades), the flow of data is merely suspended.

Stabilization iterations can be scheduled during low acti-
vity periods or following shut downs, but when the system is
restarted, novel data will continue to be delivered to the sys-
tem and will continue to trigger the formation of new cate-
gories. Further stabilization iterations will have to include
previously assigned data objects. That is, data elements will
continue to move, possibly indefinitely since new and more
representative prototypes will continue to be created.

In this context, the conditions for neither type of stabili-
ties are met: there is no stable attribution of data to categories
and there is endless proliferation of categories. The endless
proliferation of categories is not problematic: it is on the
contrary a necessary characteristic of a true on-line, incre-
mental, streaming data, plastic learning application. On the
other hand, the fact that a datum cannot be assigned to a cate-
gory permanently is the nature itself of the problem we are
addressing here.

Indeed, from a practical standpoint and particularly from a
usability engineering point of view, it is absolutely necessary
that once data elements have been attributed to a category

they are not moved elsewhere. The consequences of multiple
movements of data on human users is confusion and loss of
productivity due to continual search for information that just
keeps moving.

2.3 Conceptual duplication

The solution we propose in this paper is to treat stabiliza-
tion not as “conceptual shifts” (i.e. data moving between
concepts) but rather as “conceptual copies” (i.e. data being
duplicated across concepts). We call this stabilization
approach conceptual duplications. The idea of conceptual
duplication for ART1 neural networks modifies stabilization
in such a way that all associations between data and catego-
ries are remembered by the network, even those that would be
invalidated by traditional stabilization. In other words, once
a datum has been attributed to a cluster, the network remem-
bers this association. The overall algorithm for ART1 and the
neural architecture itself are not changed. The changes can
be localized outside the network and consist in remembering
all assignments of data elements to categories.

The memory in which conceptual attributions are stored
is not part of the ART1 neural network structure itself. We do
not claim neurological plausibility; we take an engineering
approach to solving a practical problem. Hence, a data struc-
ture called assignment table is created in regular computer
memory (i.e. not part of the neural network structure) and
used to accumulate the various categories assigned to data
elements.

The assignment table has the format shown below, where
each column represents a data element and each row corres-
ponds to a stabilization iteration, with cell (i, j) of the table
containing the cluster or category number for datum j at ite-
ration i . For example, at iteration 2, datum 5 is assigned to
cluster (or category) 8. The first row and column are shown
for convenience and contain respectively the datum number
(from 1 to R) and the iteration number (from 1 to 4 in this
specific example case).

1 2 3 4 5 6 ... R

1 1 2 2 1 3 4 ... 49
2 15 4 4 1 8 4 ... 18
3 15 9 4 1 15 7 ... 25
4 15 9 4 1 15 7 ... 25

The stable state can be observed by considering the last two
rows of the assignment table. Indeed, one observes that assi-
gned category numbers do not change anymore for any of
the R data elements between iterations 3 and 4. This is an
indication that stability has been achieved and that further
stabilization iterations will not affect clustering results any
further. In this example, we take the conventional view that
there is a finite set of R data elements to illustrate the regu-
lar stabilization. The same assignment table structure can
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be used to accumulate category assignments for an infinite
data set and reach stability with the conceptual duplication
strategy.

To stabilize with the conceptual duplication strategy, the
category each datum is assigned to must be stored in the
assignment table following each stabilization iteration. One
of the difference compared with the finite data presented in
the assignment table above is that one must assume there
is enough memory to contain all assignments over the life
of the system. This is a purely practical consideration that
can be dealt with adequate hardware and memory manage-
ment. Another difference is that the last row is never truly a
last row, since stabilization iterations continue indefinitely.
Finally, the last row in the table structure shown above dis-
played a stable set of assignments: in the infinite data case
with conceptual duplication, the last row does not necessarily
show a stable attribution of clusters to data but merely a snap
shot of the current state of clusters attributions. Although an
apparently stable last row (i.e. duplicating exactly the pre-
vious one) can occur, it would be purely coincidental stabi-
lity that would soon be destroyed by the next stabilization
iteration incorporating new data.

The stable state in this framework is the one obtained
by accumulating all assignments in the table, thus ensuring
the data can always be found where it was previously assi-
gned. Therefore, the essential point we make here is that since
all assignments are preserved, data effectively ceases to be
moved between categories. Hence, data is always present
where it was at first for the convenience of user attempting to
retrieve a known data. This is the new nature of stability with
conceptual duplication. In fact, there is now duplication of
assignment information leading to a soft clustering solution
and thus increased access points to information for users.

However, it may not be desirable in some situations to
remember every single assignment, so we introduce a para-
meter called evidence. Evidence is a positive integer value
that specifies how many times a category has to be attributed
to a datum before it is deemed worthy to remember. With
evidence = 1, all assignments are preserved, which is just as
if there was no evidence parameter.

Thus, it is important to note that evidence is not a necessary
condition for stable learning, on the contrary. Evidence is an
optional feature in the conceptual duplication framework that
is provided for two reasons: first, a technical consideration as
a way to cut down memory usage, and second, for what may
be psychological plausibility in what amounts to remembe-
ring only those events that carry the most importance, i.e. in
our case, that re-occur sufficiently often.

The stabilization process under the conceptual duplica-
tion strategy with evidence thus becomes one of first accu-
mulating assignments in the assignment table and second of
trimming those assignments that do not meet the evidence
threshold. Trimming occurs when a change of assignment

happens, that is when a new category is attributed to a datum.
At that point, it is guaranteed that previous category assi-
gnments that did not meet the required evidence level will
not be considered again. This is an inherent consequence of
ART1 neural networks behavior originating from the proto-
type weights updates. In effect, the prototypes erode conti-
nually because of the intersection of attributed data. It is
therefore not possible for a datum to go back to a previous
prototype.

If the threshold of evidence is reached by none of the
clusters, the last attributed category is temporarily set as the
proper one for the datum. This corresponds to the conventio-
nal stabilization process. In this case, attribution is temporary
since as new data is processed, more stabilization iterations
will take place and it is possible that future assignments will
meet the evidence criteria. This assignment will therefore be
deemed a proper assignment until either a category change
occurs, at which time it will be removed (trimmed) and repla-
ced by the new category, or until a better assignment (one
that meets the evidence criteria) comes along. It is the only
situation where some unstable behaviour is possible and the
reason for which evidence should be used carefully, or at
the very least low values of evidence employed. Indeed, as
evidence is increased, it becomes more and more difficult to
meet the threshold; high values of evidence therefore serve
little purpose but to re-introduce instability.

We now illustrate the ideas of conceptual duplication with
evidence, temporary assignment and trimming. For this pur-
pose, we use the following assignment table which is more
representative of the processing of an infinite data set than
the previous one. For the two examples below, evidence = 2.

1 2 3 4 5 6 ...

1 1 2 2 1 3 4 ...
2 15 4 4 1 8 4 ...
3 15 9 4 1 15 7 ...
4 33 9 4 1 46 7 ...
...

For the first example, one observes that datum 1 exceeds
the evidence threshold with cluster 15 but not with cluster
1 or cluster 33. Indeed, over the four stabilization iterations,
datum 1 is assigned to cluster 15 on two occasions but only
once to cluster 1 and 33. In this case, there is too little evi-
dence to claim that cluster 1 and cluster 33 properly represent
datum 1 but there is enough evidence to decide that cluster
15 is an appropriate representation. Note that when the clus-
ter assignment was changed from 1 to 15, the assignment of
1 would have been trimmed (i.e. removed from the assign-
ment table) since it cannot possibly meet the evidence criteria
again.

As a second example, lets now consider datum 5, which
has its cluster assignment changed from 3 to 8 and then to 15

123



662 L. Massey

and 46 during stabilization. There is no cluster that meets the
evidence threshold of 2, so the last assignment to category 46
is deemed to properly represent datum 5, but only on a tem-
porary basis. Suppose that on iteration 5, cluster 46 is again
attributed to datum 5, then its status would change from tem-
porary to permanent. If on the contrary the next assignment is
to some other cluster, then 46 would be trimmed and that new
cluster chosen to represent datum 5 on a temporary basis.

Soft clustering is a by-product of conceptual duplication
as mentioned previously. ART-based clustering, including
ART1, results in hard clustering, that is one category assign-
ment per data object. On the contrary, soft clustering allows
multiple categories. Soft-clustering is for example very use-
ful in text clustering since multiple topics can be assigned to
a document, making them more easily accessible for users.
It is actually a more natural way to organize documents than
hard clustering since documents are rarely of a single topic
according to human classifiers, a phenomenon known as the
inter-indexer inconsistency (Cleverdon 1984).

Attempts to make ART networks produce soft-clusters
are few, notably the KMART system (Kondadadi and Kozma
2002). KMART is based on fuzzy-ART and rather than choo-
sing only the winning output, all output neurons that pass the
vigilance test are deemed to represent the datum. We have
implemented this idea in ART1 but found that the network
fails to converge with a finite data set due to the creation of
an infinite number of clusters, thus failing on the second type
of stability mentioned in the introduction. Conceptual dupli-
cation not only solves the problem of unattainable stability
in infinite data, but it also offers a working means to achieve
soft clustering with ART1.

3 Experimental work

3.1 Methodology

To verify the viability of conceptual duplication we have
designed an experiment in the domain of text clustering. The
task of text clustering consists in grouping textual documents
according to their content, where the groups (the clusters
or categories) can be regarded as containing documents of
similar topics. We have seen previously in Sect. 2.2 the
importance of stability in such an environment.

Our experimental strategy is to compare the quality of
clustering obtained with the traditional ART1 stabilization
scheme with the quality generated with conceptual duplica-
tion clustering. Clustering quality is the determinant factor
that can decide whether our approach has potential or not, as
we already know that a superior clustering is achieved from
the point of view of increased stability and of soft-clustering
that facilitates information access.

The text classification benchmark dataset known as
Reuter-21578 Distribution 1.0 ModApté split (Apte et al.
1994) was used for the experiment. Each document is trans-
formed in the standard vector space model numerical repre-
sentation (Salton and Lesk 1968). In this model, a document
is characterized by a feature set corresponding to the words
present in the document. An ordered list of words appearing
in the collection is built, from which common stop words
such as articles and prepositions are removed. Words can also
be stemmed (i.e. transformed into their lexicographic root)
but we have not applied stemming in this experiment since
previous experiments showed it resulted in lower quality
clustering.

Hence, a document d is translated into an N -dimensional
binary vector, where N is the number of features (words)
used to represent a document. The vector’s i th component
corresponds to the i th word in the collection. A value of 1
indicates the presence of this word in d while a value of 0
signifies its absence.

Since the resulting vectors are of very high dimensionality,
a final pre-processing step is applied to reduce the number
of features. To achieve this goal, words occurring in less
than 77 documents were removed. This simple feature space
dimensionality reduction was judged very effective for text
classification (Yang and Pedersen 1997). The value of 77
is the one that resulted in best quality in previous expe-
riments by eliminating as many words as possible without
getting 0-vectors. The final vectors were of dimensionality
N = 357.

The value of the vigilance parameter is incremented
successively by fine steps and the quality of clustering is
measured for each value of vigilance. This allows for obtai-
ning an overall and complete view of clustering quality, rather
than only measuring quality punctually at the pre-determined
so-called natural number of clusters (which in our case would
be 93).

The minimal number of clusters present in the data can
be determined by minimal vigilance (Massey 2002), com-
puted as ρmin < 1/N . We observe clustering results from
ρmin until the vigilance yields more than 200 clusters. This
stopping condition was selected because such a large number
of clusters would simply result in information overload for a
user and therefore not achieve the intended objective of text
clustering.

The Reuter-21578 ModApte corpus comes with a training
set (9,603 documents) and a test set (3,299 documents), both
including a ground truth solution prepared by human experts.
The training set is for supervised classification; ART1 per-
forms unsupervised learning so we use exclusively the test
set. The test set is pre-processed into the binary vector for-
mat described above, and the expected solution as determined
by human classifiers is kept aside and will be used only to
compute clustering quality.
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Clustering quality is evaluated by computing the F1

external validity of the solution. This manner of computing
quality has been used successfully in clustering before Larsen
and Aone (1999). With F1, one compares the clustering solu-
tion C = {Ci |i = 1, 2, …, M} to the ground truth solution
S = {S j |i = 1, 2, …, Ms}, hence measuring the ability of
the clustering algorithm to retrieve the solution prepared by
human classifiers. M and Ms are respectively the total num-
ber of clusters obtained with the clustering algorithm and the
number of topics defined in the desired ground truth solu-
tion. The clustering solution C is a set of clusters Ci while
the desired solution S is a set of topics S j . Both Ci and S j are
sub-sets of D = {d0, d1, …, dR}, the set of R documents to
cluster. In the case of soft clustering, the clusters S j are non-
mutually exclusive sub-sets of D. Better quality is achieved
with higher F1 values, in the range [0,1]. F1 is given by

F1 =
∑Ms

j=1 |S j |F∗
1 j∑Ms

j=1 |S j |
(3)

F∗
1 j is the F1 value of the cluster that best matches topic j

i.e., of all clusters, it is the one maximizing its F1 value with
respect to topic j . The F1 value of a cluster i with respect to
a given topic j is

F1i = 2αi

2αi + βi + χi
(4)

where

αi = |Ci ∩ S j | (5)

βi = |Ci | ∩ αi (6)

χi = |S j | ∩ αi (7)

which are respectively the number of true positives, the num-
ber of false positives and the number of false negatives.

We note that Eq. 4 is obtained by simple algebraic mani-
pulations from the well-known F1 effectiveness measure of
information retrieval and text classification (Sebastiani 2002;
Van Rijsbergen 1979):

Fb = (b2 + 1)pr

b2 p + r
(8)

where the precision p and recall r are defined as:

p = α/(α + β) (9)

r = α/(α + χ) (10)

Parameter b determines the balance between precision and
recall and its value is usually set to 1, which is what we have
done to derive Eq. 4. In text classification, the number of
true positives α, false positives β and false negatives χ are
not computed exactly as in clustering since one has a priori
knowledge of which class corresponds to which topic in the
ground truth solution. Details of the differences between

Fig. 2 Quality improves as evidence is increased

text classification and text clustering F1 computation are
presented in Massey (2005a).

3.2 Results and discussion

Fig. 2 shows the experimental results. We have processed
the text data over multiple values of vigilance generating
between 40 and 230 clusters (x-axis). For each clustering
solution thus obtained, the F1 quality was computed (y-axis).
The process was repeated with evidence thresholds of 1, 2
and 3. Since clustering quality varies dramatically between
cluster number values, a graph generated on these values
would be difficult to read. Therefore, for readability purposes
the graph of Fig. 2 displays a linear regression of the original
highly variable data points.

We can then observe on Fig. 2 that the F1 quality improves
when the value of evidence is increased from 1 to 3. Hence,
the fact that ART1 remembers previous concept attributions
based on stricter evidence threshold improves quality. Fur-
thermore, we also observe that compared to regular stabi-
lization available in the standard ART1 model, conceptual
duplication with evidence = 3 results is slightly lower qua-
lity. Indeed, the average F1 quality for the three values of
evidence = 1, 2 and 3 is respectively 0.28, 0.32 and 0.33.
With the regular ART1 stabilization, average F1 quality is
0.34, which is a meagre 0.01 (3%) higher than conceptual
duplication with evidence = 3 and 0.02 higher (6%) higher
than with evidence = 2.

We recall that an evidence of x means that a category
had to be assigned to a document x times before it was
deemed important enough to be remembered during stabi-
lization. A document can then possibly meet the evidence
criteria for multiple clusters, thus resulting in a soft-clustering
solution. This is the second advantage of conceptual dupli-
cation in addition to providing a way of stabilizing under
infinite streaming data. In the current experiment, we have
used a maximum evidence threshold of 3. Further increases
in evidence result in little further gain in quality. In fact, as
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one becomes more demanding with evidence, there is less
and less opportunities for conceptual duplication to actually
occur. Consequently, as evidence increases the solution turns
into the usual hard clustering of ART1.

Hence, although quality is not improved by conceptual
duplication, the decrease in quality is minimal, particularly
in the case of an evidence of 3 for which F1 = 0.33 compared
to F1 = 0.34 without conceptual stabilization. Moreover, the
two advantages of solving the stabilization problem and of
offering a working soft-clustering version of ART1 make the
approach very worthy.

A disadvantage of the evidence parameter is the generation
of temporary assignments which re-introduce an unstable
behavior. Indeed, only evidence = 1 (which effectively
amounts to turning off the optional evidence functionality)
totally eliminates instability. However, the evidence parame-
ter has the dual advantage of, first from a practical point
of view, restraining memory consumption and second, from
a semantic aspect, constraining what is deemed to be an
acceptable experience worthy of being remembered. Conse-
quently, higher evidence retains those assignments that are of
higher quality, as we have observed with the higher clustering
quality with evidence = 2 and 3 compared to evidence = 1.

The advantage of saving memory with evidence is relati-
vely secondary and can be handled by memory management
schemes. This is an operational issue rather than a theoreti-
cal one, thus with no negative impact on the foundation of
conceptual duplication. The second problem is rather serious,
since it forces a compromise between quality of clustering
and stability.

The beauty of conceptual duplication is that it is a general
framework that retains and observes the assignment produced
by the clustering algorithm, here an ART network. There is no
choice or compromise required: conceptual duplication may
very well work at both levels (i.e. with and without evidence).
First, all attributions are preserved as they are generated (no
more trimming) and second, as time passes and evidence can
indeed be accumulated, we annotate previous assignments
to indicate the best ones (i.e. with the evidence value). In
this manner, no forgetting is allowed to occur but the best
memories can be annotated as such and re-enforced as more
evidence is accumulated. The evidence accumulated on a
given category assignment becomes a score on the validity
of this category assignment.

Although one may be interested in investigating the seve-
rity of unstable behaviour introduced by temporary assign-
ments or in determining an optimal value for evidence, the
previous discussion renders such experimentation rather use-
less other than from a purely academic interest. Indeed, based
on our experiments, it has become obvious that evidence is
not a parameter of the learning or a threshold that must be
met, but rather an output of the process that indicates the
goodness of an attribution. Doing so, temporary assignments,

trimming and any instability are eliminated. In the end, the
general framework of conceptual duplication provides the
required mechanisms to attain stability and more. Our expe-
rimental results allowed us to re-visit our initial design and
improve it.

One area of future work to conduct in a real-life envi-
ronment is to measure memory usage as time passes and a
growing number of data is processed. Trimming, which was
partially designed as a mechanism to limit the size of the
assignment table is gone. Therefore, all assignments are pre-
served and the assignments table will potentially consume
large amounts of memory.

Another interesting work to conduct is to perform usa-
bility testing to determine how easy it is for users to find
information with the evidence score and the multiple assign-
ments. One objective of such a study with human users is to
uncover how many assignments for each datum is optimal
in finding information and the impact of a large number of
assignments on the cognitive load of a user.

4 Conclusion

In this paper, we discussed the stabilization problem of data
elements moving between categories in a dynamic environ-
ment when using ART1. Since there is never a real state
of “completeness” in infinite streaming data (i.e. new data
continue to be submitted indefinitely to the learning system),
ART1 keeps creating new categories infinitely. During ART’s
stabilization phase, the data are moved between categories
until a stable state can be reached. However, the condition
for stability can never be reached because the neural net-
work keeps forming new categories based on new data being
processed which causes more movement of data.

We have proposed a new stabilization strategy named
conceptual duplication to resolve this problem. In this case,
the nature of stability has changed radically: from stabi-
lity that iteratively assigns a single concept attribution onto
each datum of a static dataset to a stabilization that handles
dynamic, streaming data and accumulates an evidence score
to designate the best multiple conceptual attributions. With
conceptual duplication, past concept attributions are remem-
bered and scored rather than being forgotten as in the regular
ART1 stabilization process.

Our objective and evaluation strategy in this work was to
test the viability of conceptual duplication from the point of
view of quality compared to the usual ART1 stabilization
mechanism. This objective was achieved. Future work will
allow us to look at practical issues such as usability issue and
memory consumptions.

Experimental results in a text clustering task have shown
that as greater evidence is demanded, F1 quality first increases
but then tapers off with higher evidence which forces the
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network back into its usual unstable hard clustering beha-
viour. Stabilization with conceptual duplication results in a
F1 clustering quality that is slightly lower than traditional
ART1 stabilization. However, conceptual duplication offers
two major advantages: first, it resolves the important problem
about data moving between categories during stabilization in
a dynamic data environment; and second, it provides a soft-
clustering solution which is a very useful addition in many
practical applications. These major advantages more than
outweigh the small loss in quality.

Our experiments have shown that incrementing evidence
results in better quality clustering, but at the cost of
re-introducing instability. This observation has allowed us
to revise and adjust the detailed mechanism of conceptual
duplication and turn evidence into a score that identifies the
best category assignments rather than a threshold to keep or
reject categories. Hence, both the stability of low evidence
and the quality of higher evidence can be obtained.

The conceptual duplication principle is a very useful
improvement to ART1. This improvement allows for the uti-
lization of ART1 in a streaming environment with infinite
data. Realistic environments often involve infinite datasets,
which renders conceptual duplication an even more essen-
tial contribution since it makes ART1 usable in such real-life
applications.
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